Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 61(23): 2648-2661, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36398895

RESUMO

Human histidine triad nucleotide-binding (hHINT) proteins catalyze nucleotide phosphoramidase and acyl-phosphatase reactions that are essential for the activation of antiviral proTides, such as Sofosbuvir and Remdesivir. hHINT1 and hHINT2 are highly homologous but exhibit disparate roles as regulators of opioid tolerance (hHINT1) and mitochondrial activity (hHINT2). NMR studies of hHINT1 reveal a pair of dynamic surface residues (Q62, E100), which gate a conserved water channel leading to the active site 13 Å away. hHINT2 crystal structures identify analogous residues (R99, D137) and water channel. hHINT1 Q62 variants significantly alter the steady-state kcat and Km for turnover of the fluorescent substrate (TpAd), while stopped-flow kinetics indicate that KD also changes. hHINT2, like hHINT1, exhibits a burst phase of adenylation, monitored by fluorescent tryptamine release, prior to rate-limiting hydrolysis and nucleotide release. hHINT2 exhibits a much smaller burst-phase amplitude than hHINT1, which is further diminished in hHINT2 R99Q. Kinetic simulations suggest that amplitude variations can be accounted for by a variable fluorescent yield of the E·S complex from changes in the environment of bound TpAd. Isothermal titration calorimetry measurements of inhibitor binding show that these hHINT variants also alter the thermodynamic binding profile. We propose that these altered surface residues engender long-range dynamic changes that affect the orientation of bound ligands, altering the thermodynamic and kinetic characteristics of hHINT active site function. Thus, studies of the cellular roles and proTide activation potential by hHINTs should consider the importance of long-range interactions and possible protein binding surfaces far from the active site.


Assuntos
Antivirais , Histidina , Humanos , Histidina/química , Antivirais/farmacologia , Analgésicos Opioides , Tolerância a Medicamentos , Catálise , Cinética , Nucleotídeos/química
2.
Nucleic Acids Res ; 50(19): 11175-11185, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36243966

RESUMO

The function of most proteins is accomplished through the interplay of two or more protein domains and fine-tuned by natural evolution. In contrast, artificial enzymes have often been engineered from a single domain scaffold and frequently have lower catalytic activity than natural enzymes. We previously generated an artificial enzyme that catalyzed an RNA ligation by >2 million-fold but was likely limited in its activity by low substrate affinity. Inspired by nature's concept of domain fusion, we fused the artificial enzyme to a series of protein domains known to bind nucleic acids with the goal of improving its catalytic activity. The effect of the fused domains on catalytic activity varied greatly, yielding severalfold increases but also reductions caused by domains that previously enhanced nucleic acid binding in other protein engineering projects. The combination of the two better performing binding domains improved the activity of the parental ligase by more than an order of magnitude. These results demonstrate for the first time that nature's successful evolutionary mechanism of domain fusion can also improve an unevolved primordial-like protein whose structure and function had just been created in the test tube. The generation of multi-domain proteins might therefore be an ancient evolutionary process.


Assuntos
Ligases , Engenharia de Proteínas , Engenharia de Proteínas/métodos , Proteínas
3.
Curr Opin Struct Biol ; 68: 129-134, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33517151

RESUMO

Natural proteins are the result of billions of years of evolution. The earliest predecessors of today's proteins are believed to have emerged from random polypeptides. While we have no means to determine how this process exactly happened, there is great interest in understanding how it reasonably could have happened. We are reviewing how researchers have utilized in vitro selection and molecular evolution methods to investigate plausible scenarios for the emergence of early functional proteins. The studies range from analyzing general properties and structural features of unevolved random polypeptides to isolating de novo proteins with specific functions from synthetic randomized sequence libraries or generating novel proteins by combining evolution with rational design. While the results are exciting, more work is needed to fully unravel the mechanisms that seeded protein-dominated biology.


Assuntos
Peptídeos , Proteínas , Evolução Molecular , Peptídeos/genética , Proteínas/genética
4.
ACS Synth Biol ; 9(2): 181-190, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31891492

RESUMO

mRNA display is a robust in vitro selection technique that allows the selection of peptides and proteins with desired functions from libraries of trillions of variants. mRNA display relies upon a covalent linkage between a protein and its encoding mRNA molecule; the power of the technique stems from the stability of this link, and the large degree of control over experimental conditions afforded to the researcher. This article describes the major advantages that make mRNA display the method of choice among comparable in vivo and in vitro methods, including cell-surface display, phage display, and ribosomal display. We also describe innovative techniques that harness mRNA display for directed evolution, protein engineering, and drug discovery.


Assuntos
Peptídeos/metabolismo , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Evolução Molecular Direcionada , Biblioteca de Peptídeos , Peptídeos/genética , Engenharia de Proteínas , Proteínas/genética , Estabilidade de RNA , Ribossomos/metabolismo
5.
FEBS Lett ; 594(10): 1497-1505, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990367

RESUMO

Human histidine triad nucleotide-binding protein 2 (hHINT2) is an important player in human mitochondrial bioenergetics, but little is known about its catalytic capabilities or its nucleotide phosphoramidate prodrug (proTide)-activating activity akin to the cytosolic isozyme hHINT1. Here, a similar substrate specificity profile (kcat /Km ) for model phosphoramidate substrates was found for hHINT2 but with higher kcat and Km values when compared with hHINT1. A broader pH range for maximum catalytic activity was determined for hHINT2 (pK1  = 6.76 ± 0.16, pK2  = 8.41 ± 0.07). In addition, the known hHINT1-microphthalmia-inducing transcription factor-regulating molecule Ap4 A was found to have no detectable binding to HINT1 nor HINT2 by isothermal titration calorimetry. These results demonstrate that despite differences in their sequence and localization, HINT1 and HINT2 have similar nucleotide substrate specificities, which should be considered in future proTide design and in studies of their natural function.


Assuntos
Fosfatos de Dinucleosídeos , Histidina/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Biocatálise , Calorimetria , Humanos , Concentração de Íons de Hidrogênio , Proteínas Mitocondriais/química , Proteínas do Tecido Nervoso/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...